Es el momento de la ciencia y la solidaridad
Una semana después de que China notificara a la OMS los primeros casos de una neumonía severa de origen desconocido, se identificó el agente causante: el nuevo coronavirus SARSCoV2. Unos días después ya estaba disponible el genoma del virus. A día de hoy, son ya más de 970 los artículos científicos accesibles vía PubMed (ref.), en poco menos de tres meses.
Conocer la biología y el genoma del virus nos facilita diseñar estrategias terapéuticas (antivirales) y preventivas (vacunas). Sabemos que el genoma de SARSCoV2 tiene una similitud del 79% con el de SARS. Uno de los genes más importantes es el que codifica para la glicoproteína S de la superficie del virus, que controla la entrada en la célula. Se sabe que el receptor celular es la enzima ACE2 (enzima 2 que convierte la angiotensina, una proteína de la membrana celular que cataliza la conversión de angiotensia I en el nonapéptido angiotensina 1-9 o de angiotensia II en angiotensina 1-7). La llave de entrada del virus a la célula es la proteína S y la cerradura en la célula el receptor ACE2. La proteína S de SARSCoV2 tiene una similitud de un 76% con la de su pariente el SARS, y una mayor afinidad por el receptor ACE2. Esto podría explicar porque el nuevo coronavirus es más contagioso y transmisible que el SARS. La entrada del virus está además facilitada por una proteasa de la propia célula, que se denomina TMPRSS211. Hay otros genes importantes del SARSCoV2 que actúan cuando el virus ya está dentro de la célula. Son el de la ARN polimerasa (RdRp), una enzima que replica el genoma del virus y los de las proteasas C3CLpro y PLpro, que intervienen en el procesamiento de la proteínas virales. Estos genes tiene una similitud con los del SARS de un 95, 95 y 83%, respectivamente.
En estos tres meses escasos, ya hay varias propuestas terapéuticas y vacunas contra el nuevo coronavirus. Jamás la ciencia había avanzado tanto en tan poco tiempo para combatir una epidemia. Muchas de las propuestas vienen de grupos de investigación que llevaban años trabajando contra otros virus, especialmente contra SARS y MERS. Todo ese conocimiento acumulado ha permitido ahora ir a una velocidad nunca antes vista.
Terapias antivirales para curar
Como hemos comentado, conocer con detalle el genoma del virus y cómo se multiplica dentro de las células nos permite proponer antivirales que lo bloquen e inhiban su multiplicación.
Inhibir la entra del virus.
La cloroquina se ha empleado durante años contra la malaria. Se sabe que esta droga (por cierto, disponible y barata) es también un potente antiviral, porque bloquea la entrada del virus a la célula. Un ensayo clínico preliminar ha revelado que es efectivo para reducir la carga viral en pacientes con SARSCoV2 (ref.).
Algunos de los virus que están rodeados con una envoltura, como el SARSCoV2, entran al interior de la célula por endocitosis formando una pequeña vesícula. Una vez dentro de la célula, una bajada de pH promueve que se fusionen la envoltura del virus con la membrana de la vesícula que lo contiene, para así quedar "libre" en el citoplasma. La cloroquina lo que hace es impedir esa bajada de pH, con lo que se inhibe la fusión de las membranas y se impide la entrada del virus al citoplasma celular. Se ha visto que la cloroquina inhibe la replicación del SARSCoV2 in vitro en cultivos celulares. Por eso, se ha ensayado en pacientes con SARSCoV2 la hidroxicloroquina, un derivado de la cloroquina menos tóxico. El tratamiento con hidroxicloroquina combinado con azitromicina (un antibiótico para prevenir complicaciones secundarias por bacterias) ha demostrado, en un ensayo preliminar, que el virus desapareció en el 70% de los pacientes tratados, comparado con el 12,5% de los controles sin tratar.
Otras propuestas que se están ensayando son: el barcitinib, un antiinflamatorio aprobado para tratar la artritis reumatoide, que podría inhibir la endocitosis del virus (ref.); y el mesilato de camostat, un fármaco aprobado en Japón para su uso en la inflamación del páncreas, y que inhibe la proteasa celular TMPRSS2 necesaria para la entrada del virus. Se ha comprobado que este compuesto bloquea la entrada del virus en las células pulmonares (ref.).
Inhibir la ARN polimerasa viral.
Quizá uno de los antivirales más prometedores contra el SARSCoV2 sea el remdesivir, un análogo de nucleótidos inhibidor de la ARN polimerasa viral, que impide que el virus se multiplique dentro de la célula. Ya se ha empleado contra el SARS y MERS y se ensayó con éxito en las últimas epidemias de Ébola, y contra otros virus con genoma ARN. Es por tanto un antiviral de amplio espectro. Ya están en curso al menos doce ensayos clínicos en fase II en China y en EE.UU., y ha comenzado otro en fase III con 1.000 pacientes en Asia (ref.).
Otro inhibidor de amplio espectro de la ARN polimerasa viral que ya ha comenzado ensayos clínicos es el favipiravir: los primeros resultados con 340 pacientes chinos han sido satisfactorios. Favipiravir ha sido aprobado para inhibir al virus de la gripe y ensayado contra otros virus ARN.
Inhibidores de las proteasas.
La combinación de ritonavir y lopinavir se ha sugerido que podría inhibir las proteasas del SARCoV2. Estos compuestos ya se usan para tratar la infección por el VIH. El lopinavir es un inhibidor de la proteasa del virus, que se degrada fácilmente en la sangre del paciente. El ritonavir actúa como protector e impide la descomposición del lopinavir, por eso se administran de manera conjunta. Sin embargo, desgraciadamente se acaba de publicar un artículo con 199 pacientes que demuestra que el tratamiento con ritonavir/lopinavir no es efectivo contra el coronavirus (ref.). No obstante, la buena noticia es que hay al menos 27 ensayos clínicos con distintas combinaciones de tratamientos antivirales (interferón alfa-2b, ribavirina, metilprednisolona, azvudina, etc) (ref.).
De momento son tratamientos experimentales, pero que suponen una esperanza para los casos más graves y severos.
Vacunas para el futuro
La otra estrategia para controlar al virus son las vacunas. Pero recordemos que las vacunas son preventivas, se desarrollan ahora para protegernos de la siguiente "oleada" del virus, si es que vuelve. La OMS tiene una lista de al menos 41 candidatos (ref.).
Quizá una de las más avanzadas es la propuesta china, una vacuna recombinante basada en vectores de adenovirus con el gen S de SARSCoV2, que ha sido ensayada ya en monos y se sabe que produce inmunidad. Se va a comenzar un ensayo clínico fase I con 108 voluntarios sanos, entre 18 y 60 años de edad, en los que se probaran tres dosis distintas. El objetivo es comprobar la seguridad de la vacuna (si hay efectos secundarios), y probar qué dosis induce una mayor respuesta de anticuerpos.
Otras propuestas están siendo promovidas por CEPI (The Coalition for Epidemic Preparedness Innovations). Es una asociación internacional en la que colaboran organizaciones públicas, privadas, civiles y filantrópicas para desarrollar vacunas contras epidemias futuras. En este momento financia ya ocho proyectos de vacunas contra el SARSCoV2 que incluyen vacunas recombinantes, de proteínas y de ácidos nucleicos (ref.). Veamos cuales son.
1. Vacuna recombinante con el virus de sarampión (Instituto Pasteur, Themis Bioscience y Universidad de Pittsburg). Se trata de una vacuna construida en un virus vivo atenuado o defectuoso del sarampión, que se emplea como vector o vehículo, y que contiene un gen que codifica una proteína del virus SARSCoV2. De esta forma, el virus vector presenta directamente el antígeno del SARSCoV2 al sistema inmune para inducir una respuesta protectora. Este consorcio ya tienen experiencia en vacunas similares contra el MERS, VIH, fiebre amarilla, virus del Nilo occidental, dengue y otras enfermedades emergentes. En fase preclínica.
2. Vacuna recombinante con el virus de la gripe (Universidad de Hong Kong). Se trata también de una vacuna viva que emplea como vector en este caso un virus de la gripe atenuado, al que se le ha quitado el gen de virulencia NS1, y que por tanto no es virulento. A este virus vector se le añade un gen del virus SARSCoV2. Esta propuesta tiene algunas ventajas: podría combinarse con cualquier cepa de virus de la gripe estacional y servir así como vacuna antigripal, puede fabricarse de forma rápida en los mismos sistemas de producción ya existentes para las vacunas contra la gripe, y podrían emplearse como vacuna intranasal vía spray. En fase preclínica.
3. Vacuna recombinante que emplea como vector el adenovirus de chimpancé Oxford, ChAdOx1 (Jenner Institute, Universidad de Oxford). Este vector atenuado es capaz de portar otro gen que codifique para un antígeno viral. Se ha ensayado en voluntarios con modelos para el MERS, gripe, chikungunya y otros patógenos como malaria y tuberculosis. Esta vacuna puede fabricarse a gran escala en líneas celulares de embriones de aves. El adenovirus recombinante lleva el gen de la glicoproteína S de SARSCoV2. En fase preclínica.
4. Vacuna de proteína recombinante obtenida por tecnología de nanopartículas (Novavax, Inc.). Esta empresa ya tiene en fase clínica III vacunas contra otras infecciones respiratorias como gripe para adultos (Nano-Flu) y virus respiratorio sincitial (RSV-F) y ha fabricado vacunas contra el SARS y el MERS. Su tecnología se basa en producir proteínas recombinantes que se ensamblan en nanopartículas y que se administra con un adyuvante propio, Matrix-M. Este compuesto (una mezcla de saponinas de origen vegetal, colesterol y fosfolípidos) es un inmunógeno bien tolerado capaz de estimular una potente y duradera respuesta inmune inespecífica. La ventaja es que de esta forma se reduciría el número de dosis necesaria (se evitaría así la revacunación). En fase preclínica.
5. Vacuna de proteína recombinante (Universidad de Queensland), consiste en crear moléculas quiméricas capaces de mantener la estructura tridimensional original del antígeno viral. Utilizan la técnica denominada "molecular clamp", que permite producir vacunas empleado el genoma del virus en un tiempo record. En fase preclínica.
6. Vacuna mRNA-1273 (Moderna, Inc.). Se trata de una vacuna formada por un pequeño fragmento de RNA mensajero con las instrucciones para sintetizar parte de la proteína S del SARSCoV. La idea es que una vez introducido en nuestras células, sean estas mismas las que "fabriquen" esa proteína que actuaría como antígeno y estimularía la producción de anticuerpos. Está ya en fase clínica y se ha comenzado a ensayar en voluntarios sanos.
7. Vacuna de RNA mensajero (CureVac). Se trata de una propuesta similar, moléculas de RNA mensajero recombinantes que sean fácilmente reconocidas por la maquinaria celular y produzcan grandes de antígeno. Se empaquetan en nanopartículas lipídicas u otros vectores. En fase preclínica.
8. Vacuna DNA INO-4800 (Inovio Pharmaceuticals). Se trata de una plataforma que fabrica vacunas sintéticas con DNA del gen S de la superficie del virus. Ya habían desarrollado un prototipo contra el MERS (la vacuna INO-4700) que se encuentra en fase II. Recientemente publicaron los resultados de la fase I con esta vacuna INO-4700 y comprobaron que era bien tolerada y producía una buena respuesta inmune (altos niveles de anticuerpos y buena respuesta de células T, mantenida durante al menos 60 semanas después de la vacunación). En fase preclínica.
Pero todavía hay más. La propuesta española acaba de recibir financiación exprés por parte del Gobierno español. Se trata de la vacuna del grupo de Luis Enjuanes e Isabel Sola, una vacuna viva atenuada que puede resultar más fácil de fabricar y ser mucho más inmunogénica (mayor capacidad de estimular el sistema inmune). En este caso, la idea es a partir del genoma ARN de virus, retro-trascribirlo a ADN, y sobre esta replica construir mutantes que sean avirulentos. En definitiva, fabricar una copia del virus alterada que sea incapaz de producir la enfermedad, pero que sirva para activar nuestras defensas.
Todavía no existe ningún antiviral ni una vacuna específica contra el SARSCov2 aprobadas . Todas estas propuestas de antivirales y vacunas están en fase experimental. Algunas no funcionaran, no servirán para bloquear al virus, pero las posibilidades de acertar son muchas. Se acaba de publicar además una revisión (ref.) de todo el arsenal terapéutico y vacunas en fase de investigación y desarrollo contra otros coronavirus humanos, como el SARS y el MERS.
Existen más de 2.000 patentes relacionadas con los coronavirus SARS y MERS: 80% sobre agentes terapéuticos, 35% sobre vacunas y 28% sobre técnicas diagnósticas (una patente puede cubrir varios aspectos, por eso el total suma más del 100%). En esa lista hay varios cientos de patentes de anticuerpos, citoquinas, terapias ARN de interferencia y otros interferones que están en fase de investigación y desarrollo para los coronavirus SARS y MERS y que muy bien podrían funcionar contra el nuevo SARSCoV2. También hay varias decenas de patentes sobre posibles vacunas contra SARS y MERS, de las que nos podemos beneficiar para combatir el SARCoV2. Son vacunas de todo tipo: vacunas muertas inactivas, vivas atenuadas, vacunas DNA, de ARN mensajero, VLPs (virus like particles), … Todo esto pone de manifiesto que hay una inmensa cantidad de conocimiento científico que permitirá agilizar ensayos clínicos y experimentales para combatir este virus.
La OMS ha hecho publico un consorcio internacional, denominado Solidarity, cuyo objetivo es buscar un tratamiento eficaz con COVID19. De momento participan Argentina, Bahréin, Canadá, Francia, Irán, Noruega, Sudáfrica, España, Suiza y Tailandia, y está previsto que cada vez sean más las naciones que se unan en este proyecto de gran ensayo clínico mundial.
No cabe duda: es el momento de la ciencia y la solidaridad. Este partido lo vamos a ganar.
More articles- Will Ferrell Curiosidades
- Curiosidades How To Get Away With A Murderer
- Is Lifestyle Sports Open
- Viaje Ghost Rider
- Viaje Redondo A Cancun
- Curiosidades Alien Vs Predator
- Lifestyle Xperiences 365
- Curiosidades 3Ds
- Lifestyle Wake
- How Often Do Lifestyle Condoms Break
- How Much Lifestyle Cost
- Viaje En El Tiempo
- Lifestyle 48
- Viaje Past Tense
- Lifestyle 7/8 Tight
- Lifestyle Furniture Ltd
- Viaje New York
- Curiosidades Zootropolis
- Love 020 Curiosidades
- Lifestyle 8925 Home Gym
- Lifestyle 4X4
- Viaje Por Europa
- Lifestyle 1
- Lifestyle 4Wd Morley
- Viaje 9 Dias Islas Griegas
- Curiosidades Will Smith
- Lifestyle X Performance
- Viaje Que Significa
- Lifestyle Nearby
- Curiosidades Interesantes
- Curiosidades Kill Bill
- Curiosidades Xiaomi Redmi Note 8
- Curiosidades 5 Sentidos
- Lifestyle 94
- Curiosidades Rock And Roll
- Viaje Nueva Zelanda
- Viaje Que Significa
- Viaje 4X4 Marruecos
- How Lifestyle Choices Affect Health
- Viaje 4 Dias
- Lifestyle 24
- Lifestyle 535
- Curiosidades Fisica
- How Many Lifestyle Stores Are There In India
- Curiosidades Canada
- Lifestyle Uae Promo Code 2020
- Curiosidades Xpresstv
- Viaje Uber Gratis
- Viaje Largo Letra
- Viaje 3 De La Tierra Ala Luna
- Curiosidades Two And A Half
- Viaje Uruguay
- How Much Do Lifestyle Models Make
- Lifestyle Youtube Channel Ideas
- Curiosidades How To Get Away With A Murderer
- Viaje Preterite
- Viaje De Los Derbez
- What Lifestyle Causes Diabetes
- Curiosidades Google Maps
- Lifestyle Uae
- Lifestyle 28 Bose
- Lifestyle Logo
- Viaje New York
- Viajar Vs Ca Case Digest
- Curiosidades Inglaterra
- Can Lifestyle Have An Effect On Schizophrenia
- Lifestyle Modification
- Why Sedentary Lifestyle Is Bad
- Viaje Kenia Tanzania
- Is Viaje Feminine
- Curiosidades Urso Polar
- Curiosidades Volei
- Lifestyle 2
- Curiosidades E Dicas
- Spanish Translation For Viaje
- Curiosidades 8 Mile
- Lifestyle 650 Price
- Lifestyle Vloggers
- Curiosidades Sobre A Lua
- Lifestyle Large
- Lifestyle Qatar
- Curiosidades 9
- Curiosidades De Plantas Vs Zombies 2
- Viaje 3 Pelicula
- Lifecycle 9500Hr Manual
- Lifestyle Tv
- Viajar Or El Mundo
- Curiosidades Xiaomi Redmi Note 8 Pro
- Curiosidades 2 Guerra Mundial
- Can Lifestyle Changes Cure Gerd
- Lifestyle Games Like Sims
- Curiosidades Random
- Viaje Quechua
No comments:
Post a Comment